摘要 | 第1-6页 |
Abstract | 第6-8页 |
致谢 | 第8-11页 |
表格清单 | 第11-12页 |
插图清单 | 第12-14页 |
第一章 前言 | 第14-22页 |
·天然水滑石概述 | 第14页 |
·LDHs的组成及结构 | 第14-15页 |
·LDHs的性质 | 第15-16页 |
·LDHs的制备方法 | 第16-17页 |
·LDO的结构与性质 | 第17-18页 |
·LDHs和LDO的应用研究 | 第18-19页 |
·催化剂在CWPO处理含酚废水中的应用研究概况 | 第19-20页 |
·本课题研究的目的、意义及主要内容 | 第20-22页 |
第二章 Cu/Fe水滑石及其衍生物的制备和催化性能研究 | 第22-51页 |
·实验原理 | 第22-23页 |
·LDHs及LDO的制备 | 第22-23页 |
·羟基自由基(·OH)的产生 | 第23页 |
·实验部分 | 第23-25页 |
·实验原料与试剂 | 第23-24页 |
·实验仪器与设备 | 第24页 |
·水滑石及其衍生物的制备 | 第24-25页 |
·催化性能实验 | 第25页 |
·结果与讨论 | 第25-50页 |
·含铜或铁水滑石及其衍生物催化性能的比较研究 | 第25-32页 |
·含铜或铁水滑石的XRD分析 | 第26-27页 |
·Fe-Mg-Al和Cu-Mg-Al水滑石及衍生物的催化性能 | 第27-28页 |
·Fe-Ni-Al和Cu-Ni-Al水滑石及衍生物的催化性能 | 第28-32页 |
·金属元素配比对四元复合氧化物催化性能的影响 | 第32-38页 |
·Fe~(3+)/∑M~(3+)对四元复合氧化物催化性能的影响 | 第32-34页 |
·Cu~(2+)/∑M~(2+)对四元复合氧化物催化性能的影响 | 第34-36页 |
·∑M~(2+)/∑M~(3+)摩尔比对复合氧化物催化性能的影响 | 第36-38页 |
·Cu-Ni-Fe-Al水滑石及其衍生物的表征 | 第38-43页 |
·TG-DTA | 第39-40页 |
·XRD | 第40-41页 |
·FT-IR | 第41-43页 |
·Cu-Ni-Fe-Al复合氧化物在含酚废水处理中工艺参数的优化 | 第43-50页 |
·反应温度 | 第43-44页 |
·pH值 | 第44-45页 |
·催化剂浓度 | 第45-46页 |
·双氧水与苯酚的摩尔比 | 第46-47页 |
·反应时间 | 第47-48页 |
·初始苯酚浓度 | 第48-49页 |
·催化剂的循环稳定性 | 第49页 |
·最佳条件下的重复实验 | 第49-50页 |
·小结 | 第50-51页 |
第三章 降解产物的液相色谱分析 | 第51-66页 |
·实验原理 | 第51-52页 |
·实验部分 | 第52-53页 |
·实验原料与试剂 | 第52页 |
·实验仪器与设备 | 第52页 |
·高效液相色谱法分析 | 第52-53页 |
·试样的预处理 | 第52页 |
·检测波长的确定 | 第52-53页 |
·流动相配比的确定 | 第53页 |
·流动相流速的确定 | 第53页 |
·结果与讨论 | 第53-65页 |
·检测条件的选择 | 第53-57页 |
·色谱柱 | 第53页 |
·检测波长的选择 | 第53-54页 |
·流动相及配比的选择 | 第54-56页 |
·流速的选择 | 第56-57页 |
·最优HPLC检测条件 | 第57页 |
·苯酚降解中间产物的高效液相色谱分析 | 第57-64页 |
·催化剂浓度为400 mg·L~(-1)时体系的HPLC分析 | 第58-61页 |
·催化剂浓度为50 mg·L~(-1)时体系的HPLC分析 | 第61-64页 |
·苯酚降解中间反应历程的分析 | 第64-65页 |
·小结 | 第65-66页 |
结论与展望 | 第66-68页 |
参考文献 | 第68-76页 |
附录 | 第76-78页 |