首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--计算机网络论文--一般性问题论文

Research on Key Technologies for Analyzing Influential Communities and People in Social Network

Abstract第4-5页
Chapter-1: Introduction第11-21页
    1.1 Background第11-12页
    1.2 Motivation第12-14页
    1.3 Research Contents第14-17页
        1.3.1 Community Analysis第15-16页
        1.3.2 Identifying Influential People第16页
        1.3.3 Prediction of Rising Venues第16-17页
    1.4 Significance of Proposed Study第17-18页
    1.5 Main Contributions第18-20页
        1.5.1 ComRank Algorithm for Identification of Influential Communities第19页
        1.5.2 IPRank Algorithm for Identification of Influential People第19-20页
        1.5.3 Prediction of Rising Venues based on Machine Learning Algorithms第20页
    1.6 Organization of Thesis第20-21页
Chapter-2: Related Technologies and Related Work第21-55页
    2.1 Social Networks第21-26页
        2.1.1 Definition of SN第21-22页
        2.1.2 Development of SNs第22-23页
        2.1.3 Categorization of SNs第23-26页
        2.1.4 Representation of SNs第26页
    2.2 Classification of Graphs第26-29页
        2.2.1 Illustration of Weighted Graphs第26-27页
        2.2.2 Density第27-28页
        2.2.3 Illustration of Connected Components第28页
        2.2.4 Geodesic Distance第28页
        2.2.5 Diameter第28-29页
    2.3 Why Need to Research SNs第29-31页
        2.3.1 Trust Level第29页
        2.3.2 Mutual Interest第29页
        2.3.3 Exchange of Contents第29-30页
        2.3.4 Availability of Data第30页
        2.3.5 Social Influence第30-31页
    2.4 Leading Actors in SNs第31-36页
        2.4.1 Facebook第31-32页
        2.4.2 Twitter第32-34页
        2.4.3 Sina Weibo第34页
        2.4.4 LinkedIn第34-35页
        2.4.5 YouTube第35-36页
        2.4.6 Bibliographic DataBanks (BDs)第36页
    2.5 Social Network Analysis for Community Analysis第36-40页
        2.5.1 Degree Centrality第37页
        2.5.2 Betweenness Centrality第37页
        2.5.3 Closeness Centrality第37-38页
        2.5.4 Eigenvector Centrality第38-40页
    2.6 Evolution Based SNA第40-41页
        2.6.1 Prediction第40页
        2.6.2 Trending Topics Detection第40页
        2.6.3 Evolution第40-41页
        2.6.4 Event Detection第41页
    2.7 Interaction Based SNA第41-44页
        2.7.1 Influential People第41-42页
        2.7.2 Cascading第42页
        2.7.3 Information Diffusion第42-43页
        2.7.4 Independent Cascade Model (ICM)第43-44页
        2.7.5 Linear Threshold Model第44页
    2.8 Related Work第44-55页
        2.8.1 Community Analysis第44-47页
        2.8.2 Identification of Influential People第47-50页
        2.8.3 Prediction of Rising Venues第50-55页
Chapter-3: ComRank Algorithm for Identification of Influential Communities第55-71页
    3.1 Introduction第55-57页
    3.2 Related Work第57-59页
    3.3 Problem Statement第59页
        3.3.1 Citation Network (CN)第59页
        3.3.2 Problem Definition第59页
    3.4 Proposed Community Ranking Algorithm (ComRank)第59-65页
        3.4.1 Standard PageRank Algorithm第60-61页
        3.4.2 Limitations of PageRank第61页
        3.4.3 ComRank Algorithm第61-65页
    3.5 Experiments and Analysis第65-70页
        3.5.1 Experimental Setup第65-66页
        3.5.2 Experimental Results and Analysis第66-69页
        3.5.3 Computational Cost第69-70页
    3.6 Summary第70-71页
Chapter-4: IPRank Algorithm for Identification of Influential People第71-85页
    4.1 Introduction第71-73页
    4.2 Related Work第73-74页
    4.3 Problem Definition第74-76页
    4.4 Influential People Rank Algorithm (IPRank)第76-80页
        4.4.1 TunkRank Algorithm第76页
        4.4.2 Limitations of TunkRank第76-77页
        4.4.3 Modeling the Interaction Strength第77-78页
        4.4.4 IPRank Algorithm (IPRank)第78-80页
    4.5 Experiments and Analysis第80-84页
        4.5.1 Experimental Setup第80页
        4.5.2 Experimental Results and Analysis第80-81页
        4.5.3 Comparative Analysis第81-82页
        4.5.4 Implications第82-83页
        4.5.5 Significance of Factors第83页
        4.5.6 Computational Cost第83-84页
    4.6 Summary第84-85页
Chapter-5: Prediction of Rising Venues based on Machine Learning第85-103页
    5.1 Introduction第85-88页
    5.2 Related Work第88-89页
    5.3 Problem Definition第89页
    5.4 Features Engineering第89-94页
        5.4.1 Venue Inter Performance Evaluation (VIPE)第90页
        5.4.2 Venue Index (VI)第90-91页
        5.4.3 Venue Precedence (VP)第91页
        5.4.4 Venue Entropy (VE)第91-92页
        5.4.5 Maximal Citation Gain (MCG)第92页
        5.4.6 Predictive Models第92-94页
    5.5 Experiments and Analysis第94-100页
        5.5.1 Experimental Setup第94-95页
        5.5.2 Statistical Distribution of Features第95-96页
        5.5.3 Significance of Features第96页
        5.5.4 Individual Feature Analysis第96-99页
        5.5.5 Classification Performance of MLC第99页
        5.5.6 Rising Venues (RVs)第99-100页
    5.6 Summary第100-103页
Chapter-6: Conclusion and Future Directions第103-107页
    6.1 Research Summary第103-105页
    6.2 Future Directions第105-107页
References第107-117页
Acknowledgement第117-119页
List of Publications第119页

论文共119页,点击 下载论文
上一篇:LED照明及显示用柔性远程荧光薄膜的制备与性能研究
下一篇:基于事件触发机制网络控制系统的若干问题研究