首页--环境科学、安全科学论文--安全科学论文--安全工程论文--爆炸安全与防火、防爆论文

基于半监督机器学习方法的火灾风险遥感评估研究

摘要第4-6页
Abstract第6-8页
Overview of Dissertation第15-17页
Chapter 1:Introduction第17-27页
    1.1- Impact of Climate Change on Disaster Risk第17-18页
    1.2- Fires and Global Fire Risk Challenges第18-20页
    1.3- Key Factors Affecting Fire Risks第20-23页
    1.4- Remote Sensing Methods for Fire Risk Assessment第23-26页
    1.5- Research Objectives第26-27页
Chapter 2:Existing Research Base第27-35页
    2.1- Wildfires and Climatic Parameters第27-29页
    2.2- Fire Risk Assessment in China第29-32页
    2.3- Fire Risk Modeling Methods第32-34页
    2.4- Chapter Summary第34-35页
Chapter 3:Datasets and Key Methodological Concepts第35-53页
    3.1- MODIS Data for Wildfires Applications第36-38页
    3.2- TRMM Data for Precipitation第38-40页
    3.3- MODIS Data for Evapotranspiration and Potential Evapotranspiration第40-41页
    3.4- MODIS Data for Vegetation第41-43页
    3.5- MODIS Data for Land Use and Land Cover第43-44页
    3.6- Machine Learning, Current Application of Artificial Intelligence第44-50页
        3.6.1- Supervised Machine Learning第45-46页
        3.6.2- Unsupervised Machine Learning第46页
        3.6.3- Semi-supervised Machine Learning第46-47页
        3.6.4- Learning from Positive and Unlabeled Data第47-48页
        3.6.5- Support Vector Machines第48-50页
    3.7- Machine Learning for Fire Risk Assessment第50-52页
    3.8- Chapter Summary第52-53页
Chapter 4:Assessing the Impact of Climatic Parameters and their Inter-Annual Seasonal Variability on Fire Activity using Time Series Satellite Products in South China第53-76页
    4.1- Study Area and Data第53-55页
    4.2- Methodology for Studying Relationship between Fire and Other Environmental Parameters第55-58页
    4.3- Spatial and Temporal Variations of Fires in South China第58-62页
    4.4- Spatial and Temporal Variations of Climatic Parameters第62-65页
    4.5- Correlation Analysis第65-69页
    4.6- Discussion and Conclusions第69-76页
Chapter 5:Modeling Fire Risk in South East China Using Semi-Supervised Machine Learning Classification Algorithm第76-94页
    5.1- Study Area and Data第76-78页
    5.2- Methodology for Developing Semi-Supervised Machine Learning Model for Fire Risk Estimation第78-83页
        5.2.1- Sampling Grid Files第79-81页
        5.2.2- Transductive Bagging PU Learning Technique第81-82页
        5.2.3- Feature Selection第82-83页
        5.2.4- Training Supervised Binary Support Vector Machine Learning (SVM) Model with Synthetic Minority Oversampling Technique (SMOTE)第83页
        5.2.5- Verification of SVM Model第83页
    5.3- Model Evaluation on Test Dataset第83-86页
    5.4- Results and Discussion from Verification Datasets第86-94页
Chapter 6:Conclusions第94-98页
    6.1- Conclusion第94-95页
    6.2- Research Distinctions第95页
    6.3- Limitations and Future Works第95-98页
References第98-110页
Publications during Ph.D. Program第110-111页
List of Participated Projects and Activities during Ph.D. Program第111-113页
    Participated Projects第111页
    Poster Presentations第111页
    Conferences/ Workshops Attended第111-113页
Acknowledgements第113页

论文共113页,点击 下载论文
上一篇:Paddy Rice Mapping Based on Phenological and Temporal Features
下一篇:基于NDVI时间序列重构的经济型人工林时空分布信息提取研究