首页--生物科学论文--植物学论文--植物细胞遗传学论文--植物基因工程论文

水稻组学尺度多层次生物网络的构建与工具开发

Acknowledgement第7-9页
Abstract第9-10页
摘要第11-13页
Abbreviations第13-17页
Chapter 1 Introduction第17-32页
    1 Protein subcellular localization prediction in plant第19-21页
        1.1 The significance of protein subcellular localization prediction第19页
        1.2 State of the art第19-20页
        1.3 Problems第20-21页
    2 Gap filling for reconstructions of metabolic network第21-24页
        2.1 Dead-end definition第21-22页
        2.2 Existing approaches第22-23页
        2.3 Problems and our strategy第23-24页
    3 Metabolic reconstruction in plant第24-27页
        3.1 Current state of metabolic reconstruction第24-26页
        3.2 The application of metabolic network in plants第26-27页
    4 Opportunities and challenges for "big biological regulatory network" reconstruction of rice第27-29页
        4.1 Public resources for rice第27-28页
        4.2 Challenges第28-29页
    5 Significan ces第29-32页
        5.1 Conquering the bias in subcellular localization prediction for plant第29-30页
        5.2 Improving the precision and efficiency of gap filling for metabolic model第30页
        5.3 Merging GRNs, PPIs and GSMMs approaches into a single framework第30-31页
        5.4 Rice biomolecule information base第31页
        5.5 Summary第31-32页
Chapter 2 PSI: A Comprehensive and Integrative approach for accurateplant subcellular localization prediction第32-54页
    1 Motivation第32-33页
    2 Data and Methods第33-40页
        2.1 Experimental data and gold standard第33-34页
        2.2 Assessment of subcellular localization predictors第34-38页
        2.3 Singular value decomposition analysis第38页
        2.4 Integration of predictors by group-voting第38-39页
        2.5 Integration of predictors by artificial neural-network第39页
        2.6 P-values as statistical inference for significance第39-40页
    3 Results第40-50页
        3.1 Prediction bias第40-41页
        3.2 Community integration using group-voting第41-43页
        3.3 Community integration using artificial neural-network第43-45页
        3.4 Community integration outperforms individual predictors第45-46页
        3.5 Wisdom of group-voting and neural network combination for subcellular localization prediction第46-47页
        3.6 Webserver implementation第47-48页
        3.7 Comparison between PSI and other individual predictors第48-49页
        3.8 The applicability of PSI in other plants第49-50页
    4 Discussions and Summary第50-54页
        4.1 Why we need to employ the combination of group-voting and neural network?第50-52页
        4.2 Influence of experimental data as input on result output第52页
        4.3 Towards more powerful prediction第52-54页
Chapter 3 DEF: An automated dead-end filling approach based onendosymbiosis simulation第54-75页
    I Motivation第54-55页
    2 Data and Methods第55-59页
        2.1 Endosymbiosis simulation第55-56页
        2.2 Model optimization based on endosymbiosis simulation第56-58页
        2.3 Assessment Procedure第58页
        2.4 Gap filling for E. coli iJR904第58-59页
    3 Results第59-72页
        3.1 Performance evaluation第59-65页
        3.2 Gap filling for E.coli iJR904 based on KEGG database第65-69页
        3.3 Comparison of DEF with other methods第69-70页
        3.4 Webserver implementation第70-72页
    4 Discussions第72-74页
        4.1 The applicability of DEF第72-73页
        4.2 Comparison of DEF with others第73-74页
    5. Summary第74-75页
Chapter 4 The organelle-focused proteomes and interactomes in rice第75-89页
    1 Motivation第75-76页
    2 Data and Methods第76-79页
        2.1 Defining the organelle-focused proteomes of rice第76-77页
        2.2 Construction of the organelle-focused interactomes of rice and their functions第77页
        2.3 Enrichment analysis for the organdie-focused interactomes第77-78页
        2.4 Motif analysis第78-79页
    3 Results第79-88页
        3.1 Capturing the organdie-focused proteome of rice第79页
        3.2 The organelle-focused interactomes of rice第79-81页
        3.3 Function overview of the organelle-focused interactomes using GO第81-84页
        3.4 Motif analysis in the global interactome第84-85页
        3.5 Motif analysis in each organdie interactome第85-88页
    4 Summary第88-89页
Chapter 5 Architecture of a fully compartmented multilayer regulatorynetwork in rice第89-116页
    1 Motivation第89-90页
    2 Data and Methods第90-97页
        2.1 Data Resources第90-92页
        2.2 Workflow第92-93页
        2.3 Metabolic draft reconstruction第93-94页
        2.4 Manual curation for metabolic draft第94-95页
        2.5 Multilayer network construction第95-96页
        2.6 Subcellular localization prediction第96-97页
    3 Results第97-114页
        3.1 Genome-scale Metabolic Reconstruction第97-102页
        3.2 Organelle-focused omic-scale multilayer regulatory network construction of rice第102-105页
        3.3 Chromosome regulatory patterns第105-107页
        3.4 RiceNetDB: a rice biomolecular information base第107-111页
        3.5 Maximizing insight by linking annotation, subcellular location and multilayer networks第111-114页
    4 Summary第114-116页
Chapter 6 Conclusions and Future Perspectives第116-119页
    1 Conclusions第116-118页
    2 Future Perspectives第118-119页
References第119-129页
Appendix 1第129-134页
Appendix 2第134-144页
Appendix 3第144-145页
Appendix 4第145-160页
Appendix 5第160-173页
Biography第173-175页

论文共175页,点击 下载论文
上一篇:不同温度下锂离子电池热—化耦合的数值模拟研究
下一篇:医用梯度β钛基形状记忆合金的制备及超弹性能研究