中文摘要 | 第1-8页 |
英文摘要 | 第8-9页 |
第一章 绪论 | 第9-13页 |
§1.1 无穷维Hamilton算子的研究现状 | 第9-11页 |
§1.2 基本概念 | 第11-12页 |
§1.3 本文的主要结果 | 第12-13页 |
第二章 一类偏微分方程导出的算子矩阵特征函数系的完备性 | 第13-21页 |
§2.1 预备知识 | 第13-14页 |
§2.2 一类偏微分方程导出的算子矩阵的特征函数系 | 第14页 |
§2.3 基于J_1-正交性的特征函数系的完备性 | 第14-18页 |
§2.4 定理的应用 | 第18-21页 |
第三章 一类无穷维Hamilton算子特征函数系的完备性研究 | 第21-27页 |
§3.1 可导向Sturm-Liouville问题的方程导出的无穷维Hamilton算子特征函数系基于J_1正交性的完备性 | 第21-25页 |
§3.2 两类无穷维Hamilton算子的本质谱 | 第25-27页 |
总结与展望 | 第27-28页 |
参考文献 | 第28-32页 |
致谢 | 第32页 |