一种改进的粒子群优化算法及其应用
| 摘要 | 第1-7页 | 
| Abstract | 第7-10页 | 
| 第一章 绪论 | 第10-14页 | 
| ·研究背景及意义 | 第10-11页 | 
| ·粒子群优化研究现状 | 第11-13页 | 
| ·本文的主要工作 | 第13-14页 | 
| 第二章 粒子群优化算法的原理 | 第14-25页 | 
| ·原始粒子群优化算法 | 第14-18页 | 
| ·算法原理 | 第14页 | 
| ·算法的数学描述 | 第14-16页 | 
| ·算法的图形演示 | 第16页 | 
| ·粒子群优化算法的基本过程 | 第16-17页 | 
| ·算法的社会行为分析 | 第17-18页 | 
| ·标准粒子群优化算法 | 第18-22页 | 
| ·惯性权重的引入 | 第18页 | 
| ·收敛因子的引入 | 第18-19页 | 
| ·粒子群优化算法的收敛性分析 | 第19-22页 | 
| ·PSO 算法的应用 | 第22-23页 | 
| ·应用PSO 算法步骤 | 第23-24页 | 
| ·本章小结 | 第24-25页 | 
| 第三章 粒子群优化算法的发展和改进 | 第25-35页 | 
| ·引言 | 第25页 | 
| ·改进思路 | 第25-33页 | 
| ·粒子群初始化 | 第25页 | 
| ·邻域拓扑 | 第25-27页 | 
| ·参数选择 | 第27-32页 | 
| ·迭代公式 | 第32页 | 
| ·混合PSO 算法 | 第32-33页 | 
| ·本章小结 | 第33-35页 | 
| 第四章 基于学习因子PSO 算法的改进 | 第35-46页 | 
| ·PSO 算法的参数经验设置 | 第35-36页 | 
| ·对学习因子的改进 | 第36-38页 | 
| ·三组函数的实验研究 | 第38-43页 | 
| ·测试函数 | 第38-39页 | 
| ·测试方案和仿真实验 | 第39-43页 | 
| ·带变异算子的NORPSO 算法 | 第43-45页 | 
| ·变异算子的引入 | 第43-44页 | 
| ·仿真实验 | 第44-45页 | 
| ·本章小结 | 第45-46页 | 
| 第五章 M NO R PSO 在参数估计中的应用 | 第46-50页 | 
| ·参数估计介绍 | 第46页 | 
| ·回归分析中基于M N O RPSO 参数估计 | 第46-48页 | 
| ·算例分析 | 第46-47页 | 
| ·仿真实验 | 第47-48页 | 
| ·本章小结 | 第48-49页 | 
| 附录1 | 第49-50页 | 
| 总结 | 第50-51页 | 
| 参考文献 | 第51-56页 | 
| 攻读硕士学位期间取得的研究成果 | 第56-57页 | 
| 致谢 | 第57页 |