基于蚁群算法和BP神经网络的WSN数据融合算法研究
摘要 | 第1-5页 |
Abstract | 第5-7页 |
目录 | 第7-10页 |
第一章 绪论 | 第10-15页 |
·本文的研究背景与意义 | 第10-11页 |
·国内外的研究现状 | 第11-13页 |
·论文主要研究思路 | 第13-14页 |
·论文内容安排 | 第14-15页 |
第二章 无线传感器网络技术概述 | 第15-27页 |
·无线传感器网络技术发展 | 第15-17页 |
·无线传感器网络结构体系 | 第17-20页 |
·网络体系 | 第17-18页 |
·节点体系 | 第18-19页 |
·协议栈体系 | 第19-20页 |
·无线传感器网络的相关技术 | 第20-23页 |
·网络拓扑控制 | 第20-21页 |
·网络通讯协议 | 第21页 |
·能量控制 | 第21-22页 |
·数据融合 | 第22页 |
·时间同步 | 第22-23页 |
·定位技术 | 第23页 |
·无线传感器网络的特点以及应用领域 | 第23-26页 |
·无线传感器网络的特点 | 第23-24页 |
·无线传感器网络的相关应用 | 第24-26页 |
·本章小结 | 第26-27页 |
第三章 数据融合技术理论知识概述 | 第27-33页 |
·数据融合技术概念 | 第27页 |
·数据融合技术的特征以及作用 | 第27-29页 |
·数据融合技术的特征 | 第27-28页 |
·数据融合技术的作用 | 第28-29页 |
·数据融合技术的模型 | 第29-32页 |
·跟踪级融合结构模型 | 第29-31页 |
·属性级融合结构模型 | 第31-32页 |
·数据融合技术的分类 | 第32页 |
·本章小结 | 第32-33页 |
第四章 蚁群算法和BP神经网络研究 | 第33-54页 |
·基于蚁群算法的WSN数据融合模型 | 第33-41页 |
·蚁群算法的基本原理 | 第33-36页 |
·蚁群算法的特点 | 第36页 |
·基于ACO的数据融合模型 | 第36-41页 |
·基于BPNN的WSN数据融合模型 | 第41-49页 |
·BP神经网络基本原理 | 第41-46页 |
·BPNN的特点分析 | 第46-47页 |
·基于BPNN的数据融合模型 | 第47-49页 |
·ACOBP算法在WSN数据融合中的应用 | 第49-53页 |
·网络层的LEACH协议介绍 | 第49-50页 |
·引入ACO和BPNN的原因 | 第50-51页 |
·ACOBP算法的总体实现 | 第51-53页 |
·本章小结 | 第53-54页 |
第五章 ACOBP算法仿真及其分析 | 第54-65页 |
·MATLAB仿真环境介绍 | 第54页 |
·仿真实验 | 第54-64页 |
·场景设置 | 第54-56页 |
·性能评价 | 第56-64页 |
·网络生存周期 | 第57-59页 |
·BS节点接收数据包数量 | 第59-60页 |
·总体能耗情况对比 | 第60-62页 |
·收敛性对比 | 第62-64页 |
·本章小结 | 第64-65页 |
第六章 结语 | 第65-67页 |
·全文工作总结 | 第65-66页 |
·需要进一步解决的问题 | 第66-67页 |
参考文献 | 第67-70页 |
攻读硕士学位期间发表的论文 | 第70-71页 |
致谢 | 第71页 |