摘要 | 第1-6页 |
Abstract | 第6-10页 |
第一章 绪论 | 第10-22页 |
·密码学简介 | 第10-11页 |
·单向函数与半群作用问题 | 第11-14页 |
·半群作用问题的研究内容与现状 | 第14-19页 |
·离散对数问题及其相关问题的研究现状 | 第14-18页 |
·共轭作用问题及其相关问题的研究现状 | 第18-19页 |
·半群作用问题的理论研究现状 | 第19页 |
·论文的内容安排和主要结果 | 第19-22页 |
第二章 半群作用与半群作用问题 | 第22-38页 |
·半群作用与半直积 | 第22-26页 |
·半群在集合上的作用 | 第22-24页 |
·半群在半群上的作用 | 第24-26页 |
·可分整DUBREIL-JACOTIN半群 | 第26-32页 |
·强Dubreil-Jacotin 半群 | 第26-27页 |
·可分整Dubreil-Jacotin 半群的性质 | 第27-29页 |
·结构定理 | 第29-32页 |
·半群作用问题 | 第32-34页 |
·矩阵半群在交换群直积上的作用 | 第34-36页 |
·本章小结 | 第36-38页 |
第三章 基于矩阵半群作用的广义DIFFIE-HELLMAN 假设 | 第38-56页 |
·符号约定与预备知识 | 第38-39页 |
·广义计算群方案 | 第39-43页 |
·基于矩阵作用的有限域上的向量空间 | 第39-41页 |
·广义计算群方案 | 第41-43页 |
·广义离散对数假设 | 第43-45页 |
·广义DIFFIE-HELLMAN假设 | 第45-55页 |
·广义计算Diffie-Hellman 问题 | 第45-46页 |
·广义判定Diffie-Hellman 问题 | 第46-50页 |
·双线性群上的2-EDDH 问题 | 第50-55页 |
·本章小结 | 第55-56页 |
第四章 基于矩阵半群作用的公钥加密方案 | 第56-82页 |
·公钥加密方案及其可证明安全性 | 第56-59页 |
·广义ELGAMAL 公钥加密方案 | 第59-63页 |
·方案的描述 | 第59-60页 |
·安全性证明 | 第60-63页 |
·广义CRAMER-SHOUP 公钥加密方案 | 第63-80页 |
·无目标碰撞hash 函数 | 第63-64页 |
·方案的描述 | 第64-66页 |
·安全性证明 | 第66-72页 |
·GCS 加密方案的简化版本 | 第72-75页 |
·无hash 函数的GCS 加密方案 | 第75-80页 |
·本章小结 | 第80-82页 |
第五章 基于矩阵半群作用的伪随机函数 | 第82-92页 |
·伪随机函数 | 第82-83页 |
·基于EDDH 假设的伪随机函数 | 第83-87页 |
·构造方案及主要结果 | 第83-84页 |
·安全性证明 | 第84-87页 |
·基于GECDH 假设的伪随机函数 | 第87-91页 |
·本章小结 | 第91-92页 |
第六章 基于CLIFFORD 半群的密钥建立协议代数模型 | 第92-104页 |
·IRIS ANSHEL 密钥建立协议模型 | 第92-93页 |
·CLIFFORD 半群及其有关问题 | 第93-95页 |
·基于CLIFFORD 半群的密钥建立协议 | 第95-99页 |
·基于MSCSP 的密钥建立协议 | 第95-97页 |
·基于MSISP 的密钥建立协议 | 第97-99页 |
·有限表达的CLIFFORD 幺半群重写系统 | 第99-102页 |
·自由Clifford 半群与重写系统 | 第99-100页 |
·基于Clifford 半群重写系统的密钥建立协议 | 第100-102页 |
·本章小结 | 第102-104页 |
第七章 格归约与乘法噪声多项式插值 | 第104-116页 |
·格的相关知识 | 第104-105页 |
·有限域上乘法噪声多项式插值算法的改进 | 第105-109页 |
·有限域上GS 乘法噪声多项式插值算法 | 第105-106页 |
·算法的改进 | 第106-109页 |
·整数环上乘法噪声多项式插值算法的改进 | 第109-114页 |
·整数环上GS 乘法噪声多项式算法 | 第109-110页 |
·算法的改进 | 第110-114页 |
·本章小结 | 第114-116页 |
结束语 | 第116-118页 |
致谢 | 第118-120页 |
参考文献 | 第120-130页 |
攻读博士学位期间的研究成果 | 第130-131页 |
参与的科研项目 | 第131-132页 |