摘要 | 第5-6页 |
Abstract | 第6-7页 |
第1章 绪论 | 第10-14页 |
1.1 研究背景及意义 | 第10页 |
1.2 国内外研究动态 | 第10-12页 |
1.3 本文的研究思路和组织结构 | 第12-14页 |
第2章 时间分数阶慢扩散方程的显-隐差分方法 | 第14-27页 |
2.1 时间分数阶慢扩散模型 | 第14-15页 |
2.2 E-I差分格式的构造 | 第15-22页 |
2.2.1 E-I差分格式 | 第15-16页 |
2.2.2 E-I格式解的存在唯一性 | 第16-17页 |
2.2.3 E-I格式的稳定性 | 第17-19页 |
2.2.4 E-I格式的收敛性 | 第19-22页 |
2.3 I-E差分格式的构造 | 第22页 |
2.4 数值试验 | 第22-26页 |
2.5 本章小结 | 第26-27页 |
第3章 时间分数阶慢扩散方程的分段交替纯显-隐并行方法 | 第27-36页 |
3.1 PASE-I差分格式 | 第27-31页 |
3.1.1 格式的构造 | 第27-29页 |
3.1.2 PASE-I格式解的存在唯一性 | 第29页 |
3.1.3 PASE-I格式的稳定性和收敛性 | 第29-31页 |
3.2 PASI-E差分格式 | 第31-32页 |
3.3 数值试验 | 第32-35页 |
3.4 本章小结 | 第35-36页 |
第4章 时间分数阶慢扩散方程的分段交替显-隐并行方法 | 第36-50页 |
4.1 ASE-I差分格式 | 第36-44页 |
4.1.1 格式的构造 | 第36-40页 |
4.1.2 ASE-I格式解的存在唯一性 | 第40-41页 |
4.1.3 ASE-I格式的稳定性 | 第41-42页 |
4.1.4 ASE-I格式的收敛性 | 第42-44页 |
4.2 ASI-E差分格式 | 第44-45页 |
4.3 数值试验 | 第45-49页 |
4.4 本章小结 | 第49-50页 |
第5章 时间分数阶对流扩散方程的显-隐差分方法 | 第50-60页 |
5.1 时间分数阶对流-扩散模型 | 第50-51页 |
5.2 几种差分格式的构造 | 第51-57页 |
5.2.1 E-I格式的构造 | 第52-54页 |
5.2.2 PASE-I格式的构造 | 第54-55页 |
5.2.3 ASE-I格式的构造 | 第55-57页 |
5.3 数值试验 | 第57-59页 |
5.4 本章小结 | 第59-60页 |
第6章 结论与展望 | 第60-62页 |
6.1 本学位论文的总结 | 第60页 |
6.2 本学位论文的展望 | 第60-62页 |
参考文献 | 第62-66页 |
攻读硕士学位期间发表的论文及其它成果 | 第66-67页 |
攻读硕士学位期间参加的科研工作 | 第67-68页 |
致谢 | 第68页 |