摘要 | 第1-4页 |
ABSTRACT | 第4-5页 |
目录 | 第5-7页 |
第一章 绪论 | 第7-16页 |
·问题研究的背景及意义 | 第7-9页 |
·神经网络现状研究 | 第9-11页 |
·时滞神经网络的稳定研究状况 | 第11-13页 |
·Cohen-Grossberg神经网络模型的提出以及相关模型研究进展 | 第13-15页 |
·本文的主要工作 | 第15-16页 |
第二章 预备知识 | 第16-21页 |
·引言 | 第16页 |
·稳定性的概念 | 第16-18页 |
·Lyapunov函数 | 第18-19页 |
·稳定性判定定理 | 第19-20页 |
·本章小结 | 第20-21页 |
第三章 时滞Cohen-Grossberg神经网络的全局渐近稳定性 | 第21-34页 |
·引言 | 第21-22页 |
·时滞无关的解的全局渐近稳定性及唯一性 | 第22-28页 |
·准备工作 | 第22-24页 |
·解的存在唯一性 | 第24-26页 |
·全局渐近稳定性 | 第26-28页 |
·时滞相关的解的全局渐近稳定性及唯一性 | 第28-33页 |
·本章小结 | 第33-34页 |
第四章 时滞Hopfield神经网络的全局渐近稳定性 | 第34-44页 |
·引言 | 第34-35页 |
·时滞无关的全局渐近稳定性及解的存在唯一性 | 第35-39页 |
·准备知识 | 第35页 |
·解的存在唯一性 | 第35-37页 |
·全局渐近稳定性 | 第37-39页 |
·时滞相关的解的全局渐近稳定性及唯一性 | 第39-43页 |
·本章小结 | 第43-44页 |
第五章 总结与展望 | 第44-45页 |
·总结 | 第44页 |
·展望 | 第44-45页 |
参考文献 | 第45-51页 |
致谢 | 第51-52页 |
攻读硕士期间的主要研究成果 | 第52页 |