粒计算及其在图像分割中的应用
摘要 | 第1-6页 |
ABSTRACT | 第6-12页 |
第一章 绪论 | 第12-16页 |
·论文的研究背景 | 第12-13页 |
·论文的研究内容及创新点 | 第13-14页 |
·论文的主要内容 | 第13-14页 |
·论文的创新点 | 第14页 |
·论文的组织结构 | 第14-16页 |
第二章 粒计算 | 第16-23页 |
·引言 | 第16页 |
·粒计算概念 | 第16-18页 |
·粒计算的基本要素 | 第16-17页 |
·粒计算的基本问题 | 第17-18页 |
·粒计算的理论 | 第18-21页 |
·词计算理论 | 第18-19页 |
·粗糙集理论 | 第19页 |
·商空间理论 | 第19-20页 |
·其它理论 | 第20页 |
·模糊集、粗糙集和商空间的比较 | 第20-21页 |
·粒计算展望 | 第21-23页 |
第三章 粗糙集基本理论 | 第23-37页 |
·引言 | 第23-24页 |
·基本概念 | 第24-29页 |
·知识 | 第24-25页 |
·上下近似 | 第25-26页 |
·特征描述 | 第26-29页 |
·知识依赖性 | 第29页 |
·约简 | 第29-32页 |
·知识约简 | 第29-31页 |
·范畴约简 | 第31-32页 |
·知识表达系统 | 第32-33页 |
·信息系统和决策表 | 第32-33页 |
·决策规则 | 第33页 |
·决策表的约简 | 第33页 |
·粗糙集在图像处理中的应用 | 第33-37页 |
·粗糙集理论在图像处理中的应用动态 | 第34-35页 |
·粗糙集理论在图像分类中的应用 | 第35-37页 |
第四章 决策表的约简 | 第37-60页 |
·概率约简 | 第37-42页 |
·概率约简算法 | 第38-40页 |
·新概率约简算法 | 第40-42页 |
·信息量属性约简 | 第42-45页 |
·信息量属性约简算法 | 第42-43页 |
·新信息量属性约简算法 | 第43-45页 |
·分辨矩阵属性约简 | 第45-49页 |
·信息熵约简 | 第45-47页 |
·概率约简1 | 第47-48页 |
·概率约简1-1 | 第48页 |
·概率约简1-2 | 第48-49页 |
·概率约简1-3 | 第49页 |
·差别矩阵属性约简 | 第49-53页 |
·差别矩阵约简算法 | 第50页 |
·新差别矩阵约简算法 | 第50-53页 |
·信息熵属性约简 | 第53-55页 |
·信息熵属性约简算法1 | 第54页 |
·信息熵属性约简算法2 | 第54-55页 |
·粒约简 | 第55-59页 |
·约简算法比较 | 第59-60页 |
第五章 图像分割 | 第60-81页 |
·引言 | 第60-61页 |
·图像分割算法 | 第61-63页 |
·阈值法 | 第61-62页 |
·区域法 | 第62页 |
·边缘检测法 | 第62-63页 |
·彩色图像颜色特征及颜色空间的分析 | 第63-67页 |
·颜色的基本性质 | 第63页 |
·颜色空间 | 第63-67页 |
·色彩空间的选择 | 第67页 |
·基于粒的彩色图像分割 | 第67-81页 |
·分割图像的框架概述 | 第68页 |
·分割图像 | 第68-80页 |
·系统设计程序流程图 | 第80-81页 |
第六章 总结 | 第81-82页 |
·论文完成的工作 | 第81页 |
·论文进一步研究方向 | 第81-82页 |
参考文献 | 第82-87页 |
致谢 | 第87-88页 |
攻读硕士学位期间发表的学术论文 | 第88页 |